1 **B**1 Establish result true for n = 1 or n = 2M1 Add next term to given sum formula M1 Attempt to factorise or expand and simplify to correct expression Correct expression obtained A1 Specific statement of induction A1 5 conclusion 5 2 (i) (-7)M1 Obtain a single value A1 2 Obtain correct answer as a matrix (ii) $BA = \begin{pmatrix} 5 & -20 \\ 3 & -12 \end{pmatrix}$ M1 Obtain a 2×2 matrix A1 All elements correct $\begin{pmatrix} -7 & -20 \\ 11 & -20 \end{pmatrix}$ **B**1 4C seen or implied by correct answer B1ft 4 Obtain correct answer, ft for a slip in **BA** 6 3 Either M1 Express as a sum of 3 terms Use standard sum results M1 $\frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$ A1 Correct unsimplified answer M1 Attempt to factorise A1 Obtain at least factor of *n* and a $\frac{1}{3}n(2n-1)(2n+1)$ Or $\sum_{r=1}^{2n}r^2 - 4\sum_{r=1}^n r^2$ quadratic Obtain correct answer a.e.f. A1 6 Express as difference of 2 $\sum r^2$ series M1 Use standard result M1 $\frac{1}{6} \times 2n(2n+1)(4n+1) - 4 \times \frac{1}{6}n(n+1)(2n+1)$ Correct unsimplified answer A1 Attempt to factorise M1 Obtain at least factor of n A1 $\frac{1}{3}n(2n-1)(2n+1)$ Obtain correct answer A1

6

4	(i)	5 + 12i 13 67.4° or 1.18	B1E B1fi B1fi	t	Correct real and imaginary parts Correct modulus Correct argument
	(ii)		M1 A1		Multiply by conjugate Obtain correct numerator
		$-\frac{11}{85}-\frac{27}{85}$ i	A1	3	Obtain correct denominator
		85 85		7	
5	(a)	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	B1E	81 2	Each column correct SC B2 use correct matrix from MF1 Can be trig form
	(b)	(i) (ii)	B1E B1E		
				6	
6	(i)	(a) (b)	B1E B1E		Circle centre (3, -4), through origin Vertical line, clearly $x = 3$
	(ii)		B1f B1f		Inside their circle And to right of their line, if vertical

Either
$$\alpha + \beta = -2k \quad \alpha\beta = k$$

 $y^2 - 4ky + 4k = 0$

$$\alpha + \beta = -2k$$
$$\frac{-2k}{\alpha}$$
$$y = \frac{-2k}{x}$$

 $y^2 - 4ky + 4k = 0$

0r

$$-k \pm \sqrt{k^2 - k}$$
$$\frac{\alpha + \beta}{\alpha} = \frac{2k}{k + \sqrt{k^2 - k}}, \frac{\alpha + \beta}{\beta} = \frac{2k}{k - \sqrt{k^2 - k}}$$

$$y^2 - 4ky + 4k = 0$$

B1B1	State or use correct results
M1	Attempt to find sum of new roots
A1	Obtain 4k
M1	Attempt to find product of new roots
A1	Obtain 4k
B1ft 7	Correct quadratic equation a.e.f.

B1	State or use correct result
B1	State or imply form of new roots
B 1	State correct substitution
M1	Rearrange and substitute for x
A1	Correct unsimplified equation
M1	Attempt to clear fractions
A1	Correct quadratic equation a.e.f.

B1 Find roots of original equation

B1 Express both new roots in terms of k

- M1 Attempt to find sum of new roots
- A1 Obtain 4k

7

- M1 Attempt to find product of new roots
- A1 Obtain 4k
- B1ft Correct quadratic equation a.e.f.

PMT

2	1725		Mark Scheme		June 201
8	(i)		M1		Attempt to rationalise denominator or cross multiply
			A1	2	Obtain given answer correctly
	(ii)		M1		Express terms as differences using (i)
			M1		Attempt this for at least 1 st three terms
			A1		1 st three terms all correct
			A1		Last two terms all correct
		$\frac{1}{2}(\sqrt{n+2} + \sqrt{n+1} - \sqrt{2} - 1)$	M1 A1	6	Show pairs cancelling Obtain correct answer, in terms of <i>n</i>
	(iii)		B1	1 9	Sensible statement for divergence
9	(i)		M1	2	Show correct expansion process for 3 x 3
,	(1)		M1 M1		Correct evaluation of any $2 \ge 2$
		$\det \mathbf{A} = a^2 - a$	A1	3	Obtain correct answer
	(ii)	(a)	M1		Find a pair of inconsistent equations
			A1		State inconsistent or no solutions
		(b)	M1		Find a repeated equation
		(c)	A1 B1		State non unique solutions State that det A is non-zero or find corre solution
			B1	6	State unique solution SC if detA incorrect, can score 2 mark
				Б	for correct deduction of a unique solution, but only once
				9	solution, but only once
10	(i)		M1		Attempt to equate real and imaginary parts
		$x^2 - y^2 = 3 xy = 2$	A1		Obtain both results
		-	M1		Eliminate to obtain quadratic in x^2 or y^2
		z = 2 + i	M1 A1	5	Solve to obtain <i>x</i> or <i>y</i> value Obtain correct answer as a complex no.
		<i>z</i> = <i>2</i> + 1		5	Gotani confect answer as a complex no.
	(ii)		B1	1	Obtain given answer correctly
	(iii)		M1		Attempt to solve quadratic equation
		$w^3 = 2 \pm 11 i$	A1 M1		Obtain correct answers
			N/1		
					Choose negative sign Relate required value to conjugate of (i)
		w = 2 - i	M1	5	Relate required value to conjugate of (i) Obtain correct answer